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Abstract

We propose a random partition distribution indexed by pairwise similarity informa-
tion such that partitions compatible with the similarities are given more probability. The
use of pairwise similarities, in the form of distances, is common in some clustering algo-
rithms (e.g., hierarchical clustering), but we show how to use this type of information to
define a prior partition distribution for flexible Bayesian modeling. A defining feature of
the distribution is that it allocates probability among partitions within a given number of
subsets, but it does not shift probability among sets of partitions with different numbers
of subsets. Our distribution places more probability on partitions that group similar items
yet keeps the total probability of partitions with a given number of subsets constant. The
distribution of the number of subsets (and its moments) is available in closed-form and is
not a function of the similarities. Our formulation has an explicit probability mass func-
tion (with a tractable normalizing constant) so the full suite of MCMC methods may be
used for posterior inference. We compare our distribution with several existing partition
distributions, showing that our formulation has attractive properties. We provide three
demonstrations to highlight the features and relative performance of our distribution.

Keywords: Bayesian nonparametrics, product partition model, Chinese restaurant pro-
cess, nonexchangeable prior, cluster analysis.
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1 Introduction
We propose a random partition distribution indexed by pairwise information for flexible

Bayesian modeling. By way of introduction, consider Gibbs-type priors (De Blasi et al. 2015)

which lead to a broad class of Bayesian nonparametric models for data y1, y2, . . .:

yi | θi ∼ p( yi | θi ), θi | F ∼ F, F ∼ Q, (1)

where p(y|θ) is a sampling distribution indexed by θ, F is a discrete random probability mea-

sure, and Q is an infinite-dimensional prior distribution termed the de Finetti measure. The

model can be enriched by indexing the sampling model by other parameters or by placing

priors on hyperparameters defining the prior distribution Q. The sequence θ1, θ2, . . . in (1) is

exchangeable and the discrete nature of F implies that θ1, θ2, . . . will have ties with positive

probability. Therefore, for any finite n, we can reparameterize θ1, . . . , θn in terms of the unique

values φ = (φ1, . . . , φqn) and a partition πn = {S1, . . . , Sqn}, a set whose subsets S1, . . . , Sqn

are non-empty, mutually exclusive, and exhaustive such that ∪S∈πnS = {1, . . . , n}. Two in-

tegers i and i′ belong to Sj if and only if θi = θi′ = φj . The parameters φ1, . . . , φqn are

independent and identically distributed G0, the centering distribution of Q. F in (1) implies a

prior on πn having supportFn (the set of all possible partitions of n items). A distribution over

Fn is discrete, but the size of the space — which grows according to the Bell (1934) number

— makes exhaustive calculations impossible except for very small n.

The choice of Q leads to different exchangeable random partition models. For example,

when Q is the Dirichlet process (Ferguson 1973), the partition distribution p(πn) is the Ewens

distribution (Ewens 1972; Pitman 1995, 1996) and the model in (1) is a Dirichlet process

mixture model (Antoniak 1974). Or, when Q is the Poisson-Dirichlet process (Pitman and

Yor 1997), the partition distribution p(πn) is the Ewens-Pitman distribution (Pitman and Yor

1997) and the model in (1) is a Poisson-Dirichlet process mixture model.
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In some situations, the random probability measure F and the de Finetti measure Q are

not of interest and the model in (1) may be marginalized as:

yi | θi ∼ p( yi | θi ), θi =

qn∑
j=1

φjI{i ∈ Sj}, φj ∼ G0, πn ∼ p(πn). (2)

Popular models for the partition distribution p(πn) include product partition models, species

sampling models, and model-based clustering. These are reviewed by Quintana (2006) and

Lau and Green (2007).

Exchangeable random partition models, which follow from the formulation in (1), have

many attractive properties. For example, in exchangeable random partition models, the se-

quence of partition distributions with increasing sample size is marginally invariant: The par-

tition distribution of n items is identical to the marginal distribution of the first n items after

integrating out the last observation in the partition distribution of n + 1 items. Insisting on

an exchangeable random partition distribution, however, imposes limits of the formulation of

partition distributions (Lee, Quintana, Müller, and Trippa, 2013).

The presence of item-specific information makes the exchangeability assumption on

θ1, . . . , θn unreasonable. Indeed the aim of this paper is to explicitly explore a random proba-

bility model for partitions that utilizes pairwise information to a priori influence the partition-

ing. Since our partition distribution is nonexchangeable, there is no notion of an underlying

de Finetti measure Q giving rise to our partition distribution and our model lacks marginal

invariance. We will show, however, how to make the data analysis invariant to the order in

which the data is observed. The use of pairwise distances is common in many ad hoc cluster-

ing algorithms (e.g., hierarchical clustering), but we show how to use this type of information

to define a prior partition distribution for flexible Bayesian modeling.

Recent work has developed other nonexchangeable random partition models. A common

thread is the use of covariates to influence a priori the probability for random partitions. Park

and Dunson (2010) and Shahbaba and Neal (2009) include clustering covariates as part of an
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augmented response vector to obtain a prior partition model for inference on the response data.

Park and Dunson (2010) build on product partition models and focus on continuous covariates

treated as random variables, whereas Shahbaba and Neal (2009) use the Dirichlet process as

the random partition and model a categorical response with logistic regression. Müller, Quin-

tana, and Rosner (2011) proposed the PPMx model, a product partition model with covariates.

In their simulation study of several of these approaches, they found no dominant method and

suggested choosing among them based on the inferential goals. More recently, Costa et al.

(2013) provide a general family of nonexchangeable species sampling sequences dependent

on the realizations of a set of latent variables.

Our proposed partition distribution — which we call the Ewens-Pitman attraction (EPA)

distribution — is indexed by pairwise similarities among the items, as well as a mass parameter

α and a discount parameter δ which control the distribution of the number of subsets and the

distribution of subset sizes. Our distribution allocates items based on their attraction to existing

subsets, where the attraction to a given subset is a function of the pairwise similarities between

the current item and the items in the subset. A defining feature of our distribution is that it

allocates probability among partitions within a given number of subsets, but it does not shift

probability among sets of partitions with different numbers of subsets. The distribution of the

number of subsets (and its moments) induced by our distribution is available in closed-form

and is invariant to the similarity information.

We compare our EPA distribution with several existing distributions. We draw connec-

tions with the Ewens and Ewens-Pitman distributions which result from the Dirichlet process

(Ferguson 1973) and Pitman-Yor process (Pitman and Yor 1997), respectively. Of particular

interest are the distributions in the proceedings paper of Dahl (2008) and the distance depen-

dent Chinese restaurant process (ddCRP) of Blei and Frazier (2011). Whereas our distribution

directly defines a distribution over partitions through sequential allocation of items to subsets

in a partition, both Dahl (2008) and Blei and Frazier (2011) implicitly define the probability
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of a partition by summing up the probabilities of all associated directed graphs whose nodes

each have exactly one edge or loop. We will see that, although these other distributions use the

same similarity information, our distribution’s behavior is substantially different. We will also

contrast our approach with the PPMx model of Müller et al. (2011). Unlike the ddCRP and

PPMx distributions, our partition distribution has both an explicit formula for the distribution

of the number of subsets and a probability mass function with a tractable normalizing con-

stant. As such, standard MCMC algorithms may be easily applied for posterior inference on

the partition πn and any hyperparameters that influence partitioning. A demonstration, an ap-

plication, and a simulation study all help to show the properties of our proposal and investigate

its performance relative to leading alternatives.

2 Ewens-Pitman Attraction Distribution

2.1 Allocating Items According to a Permutation

Our EPA distribution can be described as sequentially allocating items to subsets to form

a partition. The order in which items are allocated is not necessarily their order in the dataset;

the permutationσ = (σ1, . . . , σn) of {1, . . . , n} gives the sequence in which the n items are al-

located, where the tth item allocated is σt. The sequential allocation of items yields a sequence

of partitions and we let π(σ1, . . . , σt−1) denote the partition of {σ1, . . . , σt−1} at time t − 1.

Let qt−1 denote the number of subsets in π(σ1, . . . , σt−1). For t = 1, we take {σ1, . . . , σ1−1}

to mean the empty set and item σ1 is allocated to a new subset. At time t > 1, item σt is

allocated to one of the qt−1 subsets in π(σ1, . . . , σt−1) or is allocated to a new subset. If S de-

notes the subset to which item σt will be allocated, then the partition at time t is obtained from

the partition at time t− 1 as follows: π(σ1, . . . , σt) = (π(σ1, . . . , σt−1) \ {S}) ∪ {S ∪ {σt}}.

Note that π(σ1, . . . , σn) is equivalent to the partition πn.

The permutation σ can be fixed (e.g., in the order the observations are recorded). Note,
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however, that our partition distribution does indeed depend on the permutation σ and it can

be awkward that a data analysis depends on the order the data are processed. We recommend

using the uniform distribution on the permutation, i.e., p(σ) = 1/n! for all σ. This has the

effect of making analyses using the EPA distribution symmetric with respect to permutation

of the sample indices, i.e., the data analysis then does not depend on the order of the data.

2.2 Pairwise Similarity Function and Other Parameters

Our proposed EPA distribution uses available pairwise information to influence the par-

titioning of items. In its most general form, this pairwise information is represented by a

similarity function λ such that λ(i, j) > 0 for any i, j ∈ {1, . . . , n} and λ(i, j) = λ(j, i). We

note that the similarity function can involve unknown parameters and we later discuss how to

make inference on these parameters. A large class of similarity functions can be defined as

λ(i, j) = f(dij), where f is a non-increasing function of pairwise distances dij between items

i and j. The metric defining the pairwise distances and the functional form of f are modeling

choices. For example, the reciprocal similarity is f(d) = d−τ for d > 0. If dij = 0 for some

i 6= j, one could add a small constant to the distances or consider another similarity function

such as the exponential similarity f(d) = exp(−τd). We call the exponent τ ≥ 0 the temper-

ature, as it has the effect of dampening or accentuating the distances. In addition to σ and λ,

the EPA distribution is also indexed by a discount parameter δ ∈ [0, 1) and a mass parameter

α > −δ, which govern distribution of the number of subsets and distribution of subset sizes.

2.3 Probability Mass Function

The probability mass function (p.m.f.) for a partition πn having the EPA distribution is

the product of increasing conditional probabilities:

p(πn | α, δ, λ,σ) =
n∏
t=1

pt(α, δ, λ, π(σ1, . . . , σt−1)) (3)
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Figure 1: While ideally item 3 could be placed anywhere, insisting on marginal invariance for
the EPA distribution requires that item 3 be constrained to fall on this Cassini oval.

where pt(α, δ, λ, π(σ1, . . . , σt−1)) is one for t = 1 and is otherwise defined as:

pt(α, δ, λ, π(σ1, . . . , σt−1)) = Pr(σt ∈ S | α, δ, λ, π(σ1, . . . , σt−1))

=


t− 1− δqt−1
α + t− 1

·
∑

σs∈S λ(σt, σs)∑t−1
s=1 λ(σt, σs)

for S ∈ π(σ1, . . . , σt−1)

α + δqt−1
α + t− 1

for S being a new subset.

(4)

At each step,
∑t−1

s=1 λ(σt, σs) is the total attraction of item σt to the previously allocated items.

The ratio of the sums of the similarity function λ in (4) gives the proportion of the total

attraction of item σt to those items allocated to subset S. As such, item σt is likely to be

allocated to a subset having items to which it is attracted. We note that our distribution is

invariant to scale changes in the similarity λ, which aligns with the idea that similarity is a

relative rather than an absolute concept.

2.4 Marginal Invariance

A sequence of random partition distributions in the sample size n is marginally invari-

ant (also known as consistent or coherent) if the probability distribution for partitions of

{1, . . . , n} is the same as the distribution obtained by marginalizing out n + 1 from the prob-

ability distribution for partitions of {1, . . . , n + 1}. For a nontrivial similarity function λ, the

proposed EPA distribution is not marginally invariant. We argue, however, that insisting on

marginal invariance is too limiting in the context of pairwise similarity information.
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Consider the following simple example with n = 3 items. Let p0 be the partition dis-

tribution for π3 obtained from (3), let p1 be the distribution of the partition π2 obtained by

marginalizing p0 over item 3, and let p2 be the distribution of the partition π2 in (3) assuming

n = 2. Without loss of generality, assume α = 1, λ(1, 2) = 1, λ(1, 3) = a, and λ(2, 3) = b.

Using reciprocal similarity (i.e., distances 1/a and 1/b) and the uniform distribution on the

permutation σ, algebra shows that marginal invariance requires the similarities a and b are

reciprocals of each other. This constraint is displayed graphically in Figure 1. Whereas one

would like to be able to consider any placement of x3, marginal invariance requires that x3 lie

on the Cassini oval. The conclusion is that requiring marginal invariance severely constrains

the similarity information in ways that are not likely to be seen in practice. Of course, saying

that two items are similar is relative to the other items being considered and, hence, the distri-

bution should be allowed to change as more items are added. Marginal invariance should not

be expected, or imposed, in the presence of pairwise similarity information. As such, a data

analysis based on n observations using our EPA distribution should be viewed as an analysis

of just those observations.

2.5 Distributions on the Parameters

The EPA distribution is indexed by the mass parameter α, the discount parameter δ,

the similarity function λ, and the permutation σ. These parameters can be treated as known

fixed quantities, or they may be treated as unknown random quantities having distributions.

The values at which they are fixed or their distributions are modeling choices. Here we give

some suggestions. We recommend a gamma distribution for the mass parameter α. Since the

discount parameter δ ∈ [0, 1), one may consider a mixture of a point mass at zero and a beta

distribution. A distribution may be placed on the parameters defining the similarity function λ.

For example, if λ(i, j) = d−τij , then a distribution for the temperature τ ≥ 0 could be a gamma

distribution. As stated previously, we recommend a uniform distribution on the permutation.
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2.6 Sampling Independent and Identically Distributed Partitions

Section 5 discusses posterior simulation for our EPA distribution. Here we describe prior

simulation, specifically, how to sample independent and identically distributed (i.i.d.) parti-

tions from the EPA distribution. To obtain a single random partition πn, first sample values

for any of the parameters α, δ, λ, and σ that are not fixed. In the case of the uniform distribu-

tion on the permutations, a random permutation σ is obtained by sorting 1, . . . , n according

to uniformly-distributed random numbers on the unit interval or through standard functions in

software. Finally, sample the partition πn itself from (3) by sequentially applying the increas-

ing conditional probabilities in (4). This process can be repeated many times to obtain multiple

i.i.d. partitions and the process can easily be parallelized over multiple computational units.

In a similar manner, i.i.d. samples can also be obtained from the ddCRP and PPMx priors.

3 Influence of the Parameters

3.1 Mass and Discount Govern the Distribution of Number of Subsets

The proposed EPA distribution is a probability distribution for a random partition πn =

{S1, . . . , Sqn} and, therefore, produces a probability distribution on the number of subsets qn.

The distribution of qn has a recursive expression that we now give. Note that the mass param-

eter α, together with the discount parameter δ and the number of subsets at time t − 1 (i.e.,

qt−1), governs the probability of opening a new subset for the tth allocated item. Taken over

the subsets in π(σ1, . . . , σt−1), the similarity proportions in (4) sum to one, and consequently

the probability that σt is allocated to an existing subset is (t− 1− δqt−1)/(α+ t− 1) and the

probability that it is allocated to an empty subset is (α+ δqt−1)/(α+ t− 1). Applying this for

every σ1, . . . , σn, we have the p.m.f. for the number of subsets qn being:

Pr(qn = k | α, δ) =
αf(n− 1, k − 1, 1, 1)∏n

t=1(α + t− 1)
, for k = 1, . . . , n, (5)
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Figure 2: Left: Mean number of subsets E(qn|α, δ) as a function of the number of items n
displayed on the log-log scale, with discount parameter δ = 0.5 and mass parameter α = 1
(bottom), α = 10 (middle), and α = 100 (top). Right: Same as left, except mass parameter
α = 10 and discount parameter δ = 0 (bottom), δ = 0.5 (middle), and δ = 0.9 (top).

where f(a, 0, c, d) =
∏a−1

t=0 (c+ t− δd), f(a, a, c, d) =
∏a−1

t=0 (α + δ(d+ t)), and otherwise:

f(a, b, c, d) = (α + δd)f(a− 1, b− 1, c+ 1, d+ 1) + (c− δd)f(a− 1, b, c+ 1, d).

Note that the distribution of qn does not depend on the similarity function λ nor on the permu-

tation σ. Thus, our EPA distribution uses pairwise similarity information to allocate probabil-

ity among partitions within a given number of subsets, but it does not shift probability among

sets of partitions with different numbers of components. In modeling a random partition πn,

this fact provides a clear separation of the roles of: i. the mass parameter α and discount

parameter δ and ii. the pairwise similarity function λ and permutation σ.

The mean number of subsets is the sum of the success probabilities of dependent Bernoulli

random variables obtained by iterated expectations, yielding:

E(qn | α, δ) =
n∑
t=1

wt, where w1 = 1 and wt =
α + δ

∑t−1
s=1ws

α + t− 1
for t > 1. (6)

Figure 2 shows, for various values of the mass parameter α and discount parameter δ, how

the mean number of subsets increases as the number of items n increases. Note that the rate

of growth can vary substantially with α and δ. Other moments (such as the variance) can be

calculated from their definitions using the p.m.f. in (5).
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Whereas the expectation in (6) scales for large n, evaluating the p.m.f. in (5) becomes

prohibitive for large n and moderate k. Alternatively, Monte Carlo estimates of the distribution

of the number of subsets and its moments can be obtained by simulation. Samples of qn can be

drawn by counting the number of subsets in randomly obtained partitions using the algorithm

in Section 2.6. Even faster, a random draw for qn is obtained by counting the number of

successes in n dependent Bournoulli trials having success probability (α + δr)/(α + t− 1),

where t = 1, . . . , n and r initially equals 0 and increments with each success.

In the special case that the discount δ is equal to zero, (5) simplifies to:

Pr(qn = k | α, δ) =
αk|s(n, k)|∏n
t=1(α + t− 1)

for k = 1, . . . , n, (7)

where |s(n, k)| is the Stirling number of the first kind. Recall that |s(n, k)| = (n − 1)|s(n −

1, k)|+|s(n−1, k−1)|with initial conditions |s(0, 0)| = 1 and |s(n, 0)| = |s(0, k)| = 0. Since

the n Bernoulli random variables are now independent with success probability α/(α+ t−1),

the expectation formula simplifies and the variance is available:

E(qn) =
n∑
t=1

α

α + t− 1
and var(qn) =

n∑
t=1

α(t− 1)

(α + t− 1)2
. (8)

We review the Ewens distribution, Chinese restaurant process, and Dirichlet process in Section

4.1 and there note that the expressions in (7) and (8) are the same for these distributions.

3.2 Effect of Similarity Function

We now study the influence of the similarity function λ. As shown in Section 3.1, a

feature of our approach is that the distribution of the number of subsets is not influenced by λ.

Result 1. For any number of items n, mass α, discount δ, and permutation σ, the probability

that items i and j are in the same subset is increasing in their similarity λ(i, j), holding all

other similarities constant.

This result is proved as follows. Let I{W} be the indicator function of the event W and
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let Ci,j be the event that items i and j are in the same subset. Recall that Fn is the set of all

partitions of n items. The task is to show that Pr(Ci,j | α, δ, λ,σ) = f(α, δ, λ,σ) is increasing

in λ(i, j). Without loss of generality, assume that σ is such that j is allocated before i. Let ti

be the time in which item i is allocated, and note that σti = i. Then,

f(α, δ, λ,σ) =
∑
πn∈Fn

I{Ci,j} p(πn | α, δ, λ,σ) =
∑
πn∈Fn

I{Ci,j} c1πn pti(α, δ, λ, π(σ1, . . . , σti−1)),

where c1πn and later c2πn are positive constants with respect to λ(i, j). Let Sj,πn denote the

subset in πn containing j. By (4),

f(α, δ, λ,σ) =
∑
πn∈Fn

c1πn Pr(i ∈ Sj,πn | α, δ, λ, π(σ1, . . . , σti−1))

=
∑
πn∈Fn

c2πn

∑
σs∈Sj,πn λ(σti , σs)∑ti−1
s=1 λ(σti , σs)

=
∑
πn∈Fn

c2πn
λ(i, j) +

∑
σs∈Sj,πn I{σs 6= j}λ(i, σs)

λ(i, j) +
∑ti−1

s=1 I{σs 6= j}λ(i, σs)
(9)

Since the numerator in each fraction is less than or equal to the denominator, each element of

the sum is increasing in λ(i, j). The proof is completed by noting that the sum of increasing

functions is also increasing.

Result 2. For any number of items n, if a distribution is placed on the mass α, the discount δ,

and the permutation σ, then the marginal probability that items i and j are in the same subset

is increasing in their similarity λ(i, j), holding all other similarities constant.

We establish this result as follows. Let p(α, δ,σ) be the joint distribution of α, δ, and

σ and let f(λ) denote the marginal probability of interest. The task is to show that f(λ) is

increasing in λ(i, j). It is sufficient to show that its derivative is greater than zero. Note that:

d

dλ(i, j)
f(λ) =

d

dλ(i, j)

∫
f(α, δ, λ,σ) p(α, δ,σ) dα dδ dσ

=

∫ [
d

dλ(i, j)
f(α, δ, λ,σ)

]
p(α, δ,σ) dα dδ dσ > 0,
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EPA(α, δ, λ,σ)

Ewens-Pitman(α, δ) Ewens(α)
δ = 0

any α, δ, λ,σ
δ = 0

constant λ
any α,σ

δ = 0
any α, λ,σ

Figure 3: Relationships between the EPA, Ewens-Pitman, and Ewens distributions. Solid
lines indicate that, under the indicated constraints, the more general distribution reduces to
a simpler distribution. Dotted lines indicate that, under the indicated constraints, the more
general distribution has the same distribution on the number of subsets qn.

because the derivative of f(α, δ, λ,σ) > 0 (since it is increasing in λ(i, j)) and the expectation

of a positive random variable is positive. Switching the order of operations is justified since

f(α, δ, λ,σ) is continuous in λ(i, j) for every α, δ, and σ, and f(α, δ, λ,σ) p(α, δ,σ) is

nonnegative and less than or equal to p(α, δ,σ), which is itself integrable.

Results 1 and 2 establish monotonicity in λ(i, j) of the probability that any two items i

and j are in the same subset. One might naively expect that λ(i, j) < λ(i, k) would imply

Pr(Ci,j) < Pr(Ci,k). While this generally holds, examples can be contrived that contradict this

statement. The explanation is that the probability that i and j belong to the same subset is not

only determined by λ(i, j), but also by other parameters and the ensemble of information in

the similarity function λ, including the similarities λ(i, l) and λ(j, l) for l ∈ {1, . . . , n}.

4 Comparison to Other Partition Distributions
We now examine the relationship between our proposed EPA distribution for a random

partition πn and other random partition distributions. In particular, we compare and contrast

the EPA distribution with the Ewens distribution, the Ewens-Pitman distribution, and two other

distributions influenced by pairwise distances. Figure 3 summarizes the relationship between

our EPA distribution and the Ewens and Ewens-Pitman distributions.
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4.1 Comparison to the Ewens and Ewens-Pitman Distributions

First, consider the special case that the discount δ is 0 and the similarity function λ(i, j)

is constant for all i and j. The ratio of the sums of similarities in (4) reduces to |S|/(t − 1)

and, since δ = 0, (4) itself reduces to:

Pr(σt ∈ S | α, π(σ1, . . . , σt−1)) =


|S|

α + t− 1
for S ∈ π(σ1, . . . , σt−1)

α

α + t− 1
for S being a new subset.

(10)

This is known as “Ewens’ sampling formula,” a particular predictive probability function (Pit-

man 1996). Its product over σ results in a partition distribution called the Ewens distribution,

which is the partition distribution from the Dirichlet process and is also known as the partition

distribution of the Chinese restaurant process (CRP), a discrete-time stochastic process on the

positive integers. The metaphor to a Chinese restaurant first appeared in Aldous et al. (1985,

pages 91-92) and is credited to Jim Pitman and Lester E. Dubins.

We note that the distribution of the number of subsets qn in (7) and the mean and variance

in (8) apply to the Ewens distribution, Chinese restaurant process, and Dirichlet process —

just as they apply to our proposed EPA distribution when δ = 0, for any similarity function

λ and permutation σ. In fact, Arratia et al. (2003) provide equivalent expressions to (7) and

(8) in their study of Ewens’ sampling formula. Therefore, the role of, interpretation of, and

intuition regarding the mass parameter α that one has for these established models carries over

directly to the EPA distribution.

Second, consider the special case that, again, the similarity function λ(i, j) is constant
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for all i and j, but the discount parameter δ is not necessarily zero. Then, (4) reduces to:

Pr(σt ∈ S | α, δ, π(σ1, . . . , σt−1))

=


|S| − δqt−1|S|/(t− 1)

α + t− 1
for S ∈ π(σ1, . . . , σt−1)

α + δqt−1
α + t− 1

for S being a new subset.
(11)

Contrast that with the “two-parameter Ewens’ sampling formula” of Pitman (1995):

Pr(σt ∈ S | α, δ, π(σ1, . . . , σt−1)) =


|S| − δ
α + t− 1

for S ∈ π(σ1, . . . , σt−1)

α + δqt−1
α + t− 1

for S being a new subset.
(12)

Sequentially applying (12) results in what we refer to as the Ewens-Pitman distribution. This

distribution is also known as the partition distribution of the two-parameter Chinese restau-

rant process and the partition distribution from the Poisson-Dirichlet process. Comparing (11)

and (12) we see that, whereas the Ewens-Pitman distribution applies the discount δ uniformly

to small and large subsets alike, the EPA distribution under constant similarities applies the

discount proportional to the relative size of the subset times the number of subsets. This dif-

ference in the application of the discount δ leads to somewhat different large sample behavior.

We use two univariate summaries of a partition πn to illustrate this difference: i. entropy:

−
∑

S∈πn(|S|/n) log(|S|/n) and ii. proportion of singleton subsets:
∑

S∈πn I{|S| = 1}/|πn|.

Figure 4 illustrates the limiting behavior of these two distributions for various combinations

of the mass parameter α and the discount parameter δ.

For any mass parameter α and discount parameter δ, the probability of assigning to

the new subset is the same for both our EPA distribution and the Ewens-Pitman distribution,

regardless of the similarity function λ and the permutation σ used for our distribution. As

such, the distribution of the number of subsets qn in (5) and the mean in (6) apply to the

Ewens-Pitman distribution, the two-parameter Chinese restaurant process, and the Pitman-Yor

process (Teh 2006), just as they apply to our proposed EPA distribution. In summary, whereas
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Figure 4: Top left panel: Mean entropy as a function of the number of items n (on the log
scale), with discount parameter δ = 0.5 and mass parameter α = 1 (bottom), α = 10 (middle),
and α = 100 (top). Top right panel: Same, with mass parameter α = 10 and discount
parameter δ = 0 (bottom), δ = 0.5 (middle), and δ = 0.9 (top). Bottom panels show the
mean proportion of subsets having only one item as a function of the number of items, using
the same combinations of α and δ values. When δ = 0, the EPA distribution with constant
similarity function λ and the Ewens-Pitman distribution are the same.

the large sample behavior of the entropy and proportion of singletons differ, the distribution

of the number of subsets is exactly the same. Therefore, the role of, interpretation of, and

intuition regarding the mass parameter α and discount parameter δ regarding their influence

on the number of subsets that one has for these established models carries over directly to the

EPA distribution.

4.2 Comparison to Distance Dependent Chinese Restaurant Processes

Our EPA distribution resembles the distribution in the proceedings paper of Dahl (2008)

and the distance dependent Chinese restaurant process (ddCRP) of Blei and Frazier (2011).
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The key difference between our EPA distribution and these others is how they arrive at a

distribution over partitions. The EPA distribution directly defines a distribution over partitions

through sequential allocation of items to subsets in a partition. In contrast, both Dahl (2008)

and Blei and Frazier (2011) define a distribution over a directed graph in which the n nodes

have exactly one edge or loop, and the disjoint subgraphs form the subsets for the implied

partition. There is a many-to-one mapping from these graphs to partitions and the probability

of a given partition is implicitly defined by summing up the probabilities of graphs that map

to the partition of interest. In the ddCRP distribution, the probability that item i has a directed

edge to item j is proportional to λ(i, j) for j 6= i and is proportional to α for j = i. The

similarities may be zero and non-symmetric. The probabilities of a directed edge for an item

is independent of all other edges. Because of the asymmetry and the many-to-one nature, the

probability of a directed edge from i to j is not the probability that items i and j are in the

same subset of the partition.

The size of the set of graphs is nn because each of the n items can be assigned to any

one of the n items. Finding the probability for all possible graphs that map to a given partition

πn quickly becomes infeasible for moderately sized n and, thus, algorithms that require the

evaluation of partition probabilities cannot be used. For example, although Blei and Frazier

(2011) provide a Gibbs sampling algorithm for posterior inference in the ddCRP, it is not clear

how to implement more general sampling strategies, e.g., split-merge updates (Jain and Neal

2004, 2007; Dahl 2003) which require evaluating the probability of a partition. In contrast,

multivariate updating strategies can be applied to the EPA distribution because its p.m.f. for

πn is easily calculated. Bayesian inference also requires the ability to update other parame-

ters (e.g., those of the sampling model) and hyperparameters (e.g., mass parameter α and the

temperature τ ). Standard MCMC update methods can be used for models involving the EPA

distribution. In contrast, the ddCRP generally requires approximate inference for hyperpa-

rameters through Griddy Gibbs sampling (Ritter and Tanner 1992). Further, since the EPA
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distribution has an explicit p.m.f., the distribution of the number of subsets and its moments

are available in closed form (Section 2.6), but this is not the case for the ddCRP. Computa-

tional issues aside, the ddCRP does not have a discount parameter δ and thus does not have

the same flexibility of the EPA distribution shown in Figure 4.

We illustrate stark differences between the EPA and ddCRP distributions using an exam-

ple dataset in Section 6.1. There we show that, unlike the EPA distribution, the ddCRP has no

clear separation between the mass parameter α and the similarity function λ in determining

the number of subsets. As we will see, even though the two distributions make use of the same

similarity information, they arrive at fundamentally different partition distributions.

4.3 Comparison to PPMx Model

Müller et al. (2011) proposed the PPMx model, a product partition model in which the

prior partition distribution has the form: p(πn|w1, . . . ,wn) ∝
∏qn

j=1 g(wj) c(Sj), where c(·)

is a cohesion as in a standard product partition model, g(·) is a similarity function defined on a

set of covariates, andwj = {wi : i ∈ Sj}. Although any cohesion may be used, the default is

that of the Ewens distribution: c(S) = αΓ(|S|). If, in addition, g(·) is the marginal distribution

from a probability model for the covariates, then the partition distribution p(πn|w1, . . . ,wn)

is symmetric with respect to permutation of sample indices and is marginally invariant (as

defined in Section 3.2). Müller et al. (2011) suggest default choices (depending on the type of

the covariates) for the similarity function that guarantee these properties.

By way of comparison, our EPA distribution with a uniform prior of the permutation σ

is also symmetric, but is not marginally invariant. On the other hand, the hyperparameters

in the probability model on the covariates can heavily influence the partitioning process, but

they are generally fixed in the PPMx model because posterior inference is complicated by

an intractable normalizing constant. In contrast, posterior inference on hyperparameters in

the EPA distribution is straightforward. As with the ddCRP but unlike our EPA distribution,
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the PPMx models does not have a clear separation between the mass parameter α and the

covariates in determining the number of subsets. More generally, it is also not clear how to

balance the relative effect of the covariates g(·) and the cohesion c(·) in the PPMx model.

Finally, one can always define pairwise similarity information from item-specific covariates,

but not all pairwise similarity information can be encoded as a function g(·) of item-specific

covariates, as required by the PPMx model. As such, the EPA distribution can accommodate

a wider class of information to influence partitioning.

5 Posterior Inference
In Bayesian analysis, interest lies in the posterior distribution of parameters given the

data. The posterior distribution is not available in closed-form for the current approach, but

a Markov chain Monte Carlo (MCMC) algorithm is available, as we now describe. This

algorithm systematically updates parts of the parameter space at each iteration and performs

many iterations to obtain samples from the posterior distribution.

First, consider the update of the partition πn given the data y and all the other parameters.

Because the model is not exchangeable, the algorithms of Neal (2000) for updating a partition

πn do not hold. As the p.m.f. is available, one could use a sampler that updates the allocation

of many items simultaneously (e.g., a merge-split sampler (Jain and Neal 2004, 2007; Dahl

2003)). Here we use a Gibbs sampler (Gelfand and Smith 1990). To describe this sampler,

suppose the current state of the partition is πn = {S1, . . . , Sqn} and let S−i1 , . . . , S−iqn be these

subsets without item i. Let πi→jn be the partition obtained by moving i from its current subset

to the subset S−ij . Further, let πi→0
n denote the partition obtained by moving i from its current

subset to an empty subset S−i0 . The full conditional distribution for the allocation of item i is:

p( i ∈ S−ij | ·) ∝ p(πi→jn | α, δ, λ,σ) p(yi|φj) for j = 0, 1, . . . , qn (13)

where φ0 is a new, independent draw from G0 at each update. Note that p(πi→jn | α, δ, λ,σ) is
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calculated by evaluating (3) and (4) at the partition πi→jn .

Because the p.m.f. of a partition πn is easily calculated, standard MCMC schemes are

available for updating other parameters, including α, δ, λ, σ, and φ = (φ1, . . . , φqn). Here

we make a few notes. We suggest proposing a new permutation σ∗ by shuffling k randomly-

chosen integers in the current permutation σ, leaving the other n− k integers in their current

positions. Being a symmetric proposal distribution, the proposed σ∗ is accepted with proba-

bility given by the minimum of 1 and the Metropolis ratio (p(πn | α, δ, λ,σ∗) p(σ∗))/(p(πn |

α, δ, λ,σ) p(σ)), which reduces to p(πn | α, δ, λ,σ∗)/p(πn | α, δ, λ,σ) when the prior per-

mutation distribution p(σ) is uniform. As k controls the amount of change from the current

permutation σ, the acceptance rate tends to decrease as k increases. If the similarity function

λ involves hyperparameters, such as a temperature τ , a Gaussian random walk is a natural

sampler to use. Likewise, a Gaussian random walk can be used to update the mass parameter

α and the discount parameter δ. When δ = 0, the distribution of the number of subsets is the

same as in Dirichlet process mixture models and, as such, the Gibbs sampler of Escobar and

West (1995) for updating the mass parameter α also applies to the EPA distribution.

Now consider updating φ = (φ1, . . . , φqn) given the data and the other parameters. This

update is the same as in any other random partition model. For j = 1, . . . , qn, update φj using

its full conditional distribution:

p(φj | yi : i ∈ Sj) ∝ p(φj)
∏
i∈Sj

p(yi|φj),

where p(φ) is the density of the centering distribution G0. This full conditional distribution

can usually be sampled directly if G0 is conjugate to the sampling model p(y | φ). If not, any

other valid MCMC update can be used, including a Metropolis-Hastings update.

Finally, we consider a sampling scheme for the estimation of p(yn+1 | y1, . . . , yn), the

density of a new observation yn+1 whose similarities λ(n+1, j) are available for j = 1, . . . , n.

Pick an initial value yn+1. Use the posterior sampling procedure as described previously but
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also update the value of yn+1 at each iteration by sampling yn+1 using the current value of its

model parameter θn+1. Let θ(b)n+1 denote the value of this model parameter for the observation

yn+1 at iteration b. Under squared error loss, the Bayes estimate of p(yn+1 | y1, . . . , yn) based

on B samples from the MCMC scheme is
∑B

b=1 p(yn+1 | θ(b)n+1)/B.

6 Demonstrations

6.1 Arrests Dataset

In this section, we illustrate properties of the EPA distribution and compare its behav-

ior to the ddCRP of Blei and Frazier (2011) using the “USArrests” dataset in R. We see that

the two distributions use the same similarity information to arrive at fundamentally different

partition distributions. As the temperature τ increases, the EPA distribution smoothly moves

away from the Ewens distribution, placing more probability on partitions that group items

with small distances (and that separate those with large distances), yet keeping the total prob-

ability of partitions with a given number of subsets constant. In contrast, the ddCRP does

not correspond to the Ewens when τ = 0 and, as temperature goes to infinity, it collapses all

probability to the partition with each item in its own singleton subset.

The “USArrests” dataset contains statistics on “arrests per 100,000 residents for assault,

murder, and rape in each of the 50 United States in 1973” and “the percent of the population

living in urban areas.” The Euclidean distances between the four-dimensional standardized

data vectors of n = 5 selected states are used. For both distributions, we use the exponential

similarity function λ(i, j) = f(dij) = exp(−τdij) and let α = 2. In addition, for the EPA

distribution, let δ = 0 and p(σ) = 1/n!. We compute the probability of each of the B(5) = 52

possible partitions of the five states for a range of temperatures.

The evolution — as temperature τ increases — of the probabilities of the 52 partitions

are displayed in the left panel of Figure 5. The cumulative probabilities of the partitions for
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Figure 5: The cumulative probabilities of the 52 partitions for the five states selected from
the ‘USArrests’ dataset for the EPA distribution (left) and the ddCRP (right). For each par-
tition, the cumulative probabilities across temperatures are joined to form the curves and the
probability of a given partition is the difference between curves. Capital letters label the same
partitions for both the left- and right-hand sides.

the five states are displayed horizontally, and the ordering of the partitions is consistent across

temperatures. For each partition, the cumulative probabilities across temperatures are joined to

form the curves and the probability of a given partition is the difference between curves. The

curves of several interesting partitions are identified with capital letters. Temperature τ = 0

corresponds to the partition distribution of the Ewens distribution since λ(i, j) is constant

when τ = 0. As the temperature increases, the pairwise distances become more influential and

eventually the EPA distribution has appreciable probability on several partitions and virtually

no probability for others. For example, whereas the partition ‘J’ in Figure 5 has probability

about 0.01 when τ = 0 (corresponding to the Ewens distribution), it grows about 10 fold in

probability when τ = 4 because this partition matches well the pairwise distance information.
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Therefore, in the EPA distribution, the temperature τ controls the degree to which the prior

distance information influences the partition distribution. The left panel of Figure 5 also shows

that the aggregate probability for partitions with 1, 2, 3, 4, and 5 subsets is constant across

temperature, illustrating a key feature of the EPA distribution discussed in Section 3.1: Our

distribution allocates probability among partitions within a given number of subsets, but it

does not shift probability among sets of partitions with different numbers of subsets.

The right-hand side of Figure 5 is the same plot for the ddCRP using the same value

for mass parameter α, the same distance information dij , and the same similarity function

λ(i, j) = f(dij) = exp(−τdij). Capital letters label the same partitions for both the left- and

right-hand sides of the figure. In contrast with the EPA distribution, the ddCRP: i. does not

correspond to the Ewens distribution with τ = 0, ii. the distribution of the number of subsets is

heavily influenced by the temperature τ , and iii. partition ‘K’ initially dominates but partition

‘A’ eventually absorbs all the probability mass when τ → ∞. We thus see that, even with

the same inputs, the EPA and ddCRP have fundamentally different properties and our EPA

distribution adds to the set of available prior distributions that one can choose.

6.2 Bayesian Density Estimation for Dihedral Angles

We now demonstrate the EPA distribution as a prior partition distribution in Bayesian

density estimation for protein structure prediction and find that using the EPA distribution

significantly improves prediction over competing methods. A protein is a string of amino

acids that together adopt unique three-dimensional conformations (i.e., structures) to allow the

protein to carry out its biochemical function. While it is relatively easy to determine the amino

acid sequence of the protein, solving its structure is more challenging. A protein’s structure

can largely be characterized by the (φ, ψ) torsion angles at each amino acid position. The task

of protein structure prediction is simplified if, for a given protein family, the distribution of

(φ, ψ) angles at each position can be estimated. The sine model (Singh et al. 2002) of the
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bivariate von Mises distribution is a model for (φ, ψ) angles:

p((φ, ψ)|µ, ν, κ1, κ2, λ) = C exp{κ1 cos(φ− µ) + κ2 cos(ψ − ν) + λ sin(φ− µ) sin(ψ − ν)}

where C−1 = 4π2
∑∞

m=0

(
2m
m

) (
λ2

4κ1κ2

)m
Im(κ1)Im(κ2), φ, ψ, µ, ν ∈ (−π, π], κ1, κ2 > 0,

and λ ∈ (−∞,∞). Note that Im(x) is the modified Bessel function of the first kind of

order m. Lennox et al. (2009) used the sine model as a kernel in a Dirichlet process mixture

model for nonparametric density estimation of a (φ, ψ) distribution. In the notation of (2),

yi = (φi, ψi) and θi = (µi, νi, κ1i, κ2i, λi). For the centering distribution G0, we use the

product of a bivariate uniform distribution on (−π, π] × (−π, π] (for µ, ν) and a bivariate

Wishart distribution with shape 2 and rate matrix 0.25 I2 (for κ1, κ2, λ), where I2 is the 2 × 2

identity matrix and the mean is therefore 0.5 I2.

In this demonstration, our data are (φ, ψ) angles for 94 members of the globin family

at aligned positions 93, 94, 95, 104, 105, and 106 based on the default multiple sequence

alignment from MUSCLE 3.8.31 (Edgar 2004). While Lennox et al. (2009) models the (φ, ψ)

distribution of a protein at a specific position based on angular data, their use of the Ewens

distribution for the prior partition distribution p(πn) does not take advantage of the known

amino acid sequence of the protein of interest. Here we replace the Ewens distribution with

several specifications of our EPA distribution, the PPMx model, and a simple data-subsetting

approach, all of which use the known amino acid sequence. Thus we mimic the task of protein

structure prediction by using amino acid sequences to inform a prior partition distribution,

resulting in density estimates tailored to a specific protein.

For each model described below, 20 independent Markov chains were run using the

MCMC sampling algorithm described in Section 5 with 27, 500 scans, discarding the first

2, 500 as burn-in and applying 1-in-5 thinning. Half of the 20 chains were initialized with a

partition having all observations in their own subsets and the other half were initialized with

all observations in the same subset. For each model and position, we compute the log pseudo
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Table 1: Differences in the log pseudo marginal likelihood (LPML) between several models
and the model using the standard Ewens distribution. Large positive values indicate better fit.

Position

93 94 95 104 105 106 Total

1. Ewens 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2. EPA using BLAST similarity 28.0 40.3 51.3 -0.8 -0.1 57.9 176.6
3. EPA using 7-covariates similarity 27.8 31.8 45.1 -0.3 -0.6 57.5 161.2
4. EPA using 1-covariate similarity 27.9 17.0 26.7 0.6 -1.3 22.3 93.3

5. PPMx using 7-covariates similarity -54.6 -30.5 7.1 -45.9 -18.3 8.6 -133.5
6. PPMx using 1-covariate similarity 24.3 10.7 15.6 -4.2 -5.9 17.3 57.7

7. Ewens w/ BLAST subsetting, t = 15 2.7 5.1 15.4 -0.4 1.8 6.2 30.8
8. Ewens w/ BLAST subsetting, t = 25 3.8 5.9 29.5 -4.7 -0.5 17.7 51.5
9. Ewens w/ BLAST subsetting, t = 35 -19.6 -1.8 31.7 -26.0 -20.5 6.9 -29.2

marginal likelihood (LPML), i.e., the sum of conditional predictive ordinates (Geisser and

Eddy 1979; Gelfand 1996) across the 94 proteins. This evaluation criterion employs leave-

one-out cross-validation to compare the predicted densities to the actual observed angle pairs.

All comparisons are relative to the model using the Ewens prior partition distribution with

mass parameter α fixed at 1.0. Table 1 provides the difference between the mean LPML

values for each model discussed below and the baseline model using the Ewens prior partition

distribution. Large positive values in the table indicate better fit to the data, with differences

larger than a few units generally being statistically significant.

Our baseline specification of the EPA distribution has similarity function λ(i, j) being

one plus the mean BLAST bit score between the amino acid sequences for proteins i and j. A

BLAST bit score is a pairwise measure of similarity between two proteins. It is large for a pair

of proteins having similar amino acid sequences and small otherwise. Twenty-seven percent of

the similarities are 1 and the remaining have a five-number summary of (9, 32, 55, 110, 306).

The temperature τ has a Gamma(2, 0.5) prior (with mean 4) and we use a uniform prior on

the permutation σ. We fix the discount δ at 0.0 and, as with the Ewens distribution, the
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mass parameter α is fixed at 1.0. When updating the permutation σ, the sampling algorithm

proposes to update k = 46 items and the mean acceptance rate is about 30%. When updating

the temperature τ , a Gaussian random walk proposal is used with standard deviation 2.0 and

the mean acceptance rate is 59%. Diagnostics indicate that the Markov chains mix well. The

LPML results for this model are found in row 2 of Table 1. There is substantial improvement

at all the positions except positions 104 and 105. At these positions, the performance is about

that of the Ewens distribution because the (φ, ψ) distributions are highly concentrated in one

region and, therefore, the amino acid sequence information is not helpful in prediction.

The BLAST bit scores are not compatible with the recommended similarity functions

for the PPMx model because they are not individual-specific covariates, but rather a measure

of similarity between two proteins. It is therefore not obvious how to incorporate them in

the PPMx framework. We can, however, treat the the amino acids at positions 93, 94, 95,

99, 104, 105, and 106 as seven categorical covariates, taking one of 21 values (representing

missingness or one of the 20 amino acids). We use the default Dirichlet-multinomial similarity

function and follow the recommendation for setting the Dirichlet hyperparameters less than

one. (Specifically, we set them at 0.5). For the sake of comparison, we use Monte Carlo

simulation from the prior to find a value for the mass parameter α such that the prior number

of subsets is the same as that obtained by using the Ewens or EPA distribution with α = 1.

The results are found in row 5 of Table 1 and show that, for most positions, the PPMx model

performs substantially worse than the Ewens distribution. We caution, however, that many of

the Markov chains exhibit poor mixing. We also find poor performance with smaller values

for the mass parameter α or when substantially increasing the burn-in period (not shown). We

suspect that this PPMx prior has several local modes that dominate the likelihood. To make

a direct comparison, we also consider an alternative specification of the EPA prior partition

distribution where the similarity function λ(i, j) is one plus the number of times proteins i and

j share the same value across these seven covariates. We find that this second specification
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of EPA (row 3) performs substantially better than the PPMx for these same covariates (row 5)

and almost as well as the original EPA specification (row 2).

We suspect that other formulations of the PPMx model may perform better. Indeed,

consider the PPMx model using the default Dirichlet-multinomial similarity function based

only on the amino acid at the current position. Under this formulation the PPMx model (row

6 of Table 1) performs much better than the Ewens distribution (row 1) overall. By way of

comparison, consider the EPA distribution where the similarity function λ(i, j) is 2 if proteins

i and j have the same amino acid at that position and is 1 otherwise. This EPA formulation

(row 4) also performs much better than the Ewens distribution (row 1) and dominates the

analogous PPMx formulation (row 6) at each position. While the EPA distribution dominates

the PPMx distribution in this case, we suspect it may perform better in other scenarios or with

non-default choices for the PPMx similarity function.

The EPA distribution allows pairwise similarity information to inform the partitioning.

An ad hoc method capturing this idea uses the standard Ewens distribution but subset the data

to only include those observations whose similarities to the observation of interest exceed a

threshold. The subsetting threshold is analogous to the temperature τ in the EPA distribution,

but there the temperature τ can be treated as random with a prior distribution whereas the

threshold must be fixed to implement the subsetting approach. Further, discarding observa-

tions will likely lead to a loss of precision in estimating other parameters. We examine several

thresholds for the BLAST bit scores and the results for the best thresholds are found on rows

7-9 in Table 1. For threshold t = 15 and t = 25, subsetting is usually better than not subsetting

(row 1), but the PPMx model (row 6) and EPA distribution (rows 2-4) perform better.

Finally, we consider posterior inference on the hyperparameters. Let the discount δ have

a mixture prior distribution with a point-mass at 0 with probability 0.5 and a Beta(1, 3) dis-

tribution otherwise. We again run 20 independent Markov chains for each position (but do

not leave out an observation). Whereas the prior probability that δ = 0 is 0.5, the posterior
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probabilities at positions 93, 94, 95, 104, 105, and 106 are 0.47, 0.36, 0.38, 0.53, 0.51, and

0.58 respectively (all of which are statistically different from 0.5). The posterior expectations

of temperature τ are 3.3, 10.4, 7.8, 4.1, 3.4, and 6.9 respectively (all of which are statistically

different from the prior expectation of 4). To assess the posterior learning on the permutation

σ, consider the indices of observations in σ. The uniform prior of σ makes the prior expec-

tation of an index be 94/2 = 47 for all 94 observations. The five-number summary of the

posterior means of the indices at position 94 is (11.6, 48.0, 48.9, 50.0, 57.7) and this pattern

is consistent across independent Markov chains. At position 106, the five-number summary

is (31.5, 46.9, 49.4, 51.2, 53.4). We conclude that, in some cases, there is substantial learning

on these parameters whereas, in other cases, there is little difference between the prior and

posterior distributions.

6.3 Bayesian Linear Regression with Latent Clusters

Section 6.2 demonstrates our proposed distribution in an application with 94 observations

and five parameters per subset. To see how our proposal performs as the dimension and

sample size grow, we now consider a simulation study with n = 1, 050 observations and 31

parameters per subset. Consider a linear regression model in which a response yi has a normal

distribution with mean xiβi and precision λi, for covariates xi = (xi1, . . . , xip), i = 1, . . . , n,

and p = 30. In this simulation study, the data are generated from one of three sets of regression

coefficient vectors and precisions. The inferential goal is to estimate the latent partition π and

the regression coefficient vectors β1, . . . ,βn. To aid in estimation, partition covariates are

available as prior information to help separate the data into subsets.

The specifics of the data generation are as follows: Set xi1 = 1 and sample all the other

x’s from the uniform distribution of the unit interval. For i ∈ S1 = {1, . . . , 350}, set (βi, λi)

to be φ1 = ((0, . . . , 0)′, 1.0). For i ∈ S2 = {351, . . . , 700}, set (βi, λi) to be a tuple φ2

containing: i. a column vector whose first 10 elements are 0.9 and the other elements are 0
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and ii. 1.0. For i ∈ S3 = {701, . . . , 1050}, set (βi, λ) to be a tuple φ3 containing: i. a column

vector φ3 whose first 6 elements are 1.0 and the other elements are 0, and ii. 1.0. Partition

covariates w1, . . . ,wn are sampled from one of three four-dimensional multivariate normal

distributions, depending on the subset to which i belongs. The parameters are taken from the

empirical moments of the three classes in the iris data (Fisher 1936), with the first, second,

and third subsets corresponding to ‘setosa,’ ‘versicolor,’ and ‘virginica,’ respectively. Note

that subsets 2 and 3 have similar coefficients and their observations have partition covariates

drawn from somewhat overlapping distributions.

In the notation of (2), we wish to estimate the parameters πn = {S1, S2, S3} and φ =

(φ1, φ2, φ3). The prior distribution for the φ’s is the conjugate multivariate normal-gamma

distribution Ng(β, λ|µ,Λ, α, β) where µ = 0, Λ is the identity matrix, α = 1, and β = 1.

Three prior distributions for the partition πn are considered and the resulting performance

is compared. First, we consider the Ewens distribution which ignores the partition covariates

w’s. Second, we consider the PPMx model (Müller et al. 2011) using their default formulation

of the similarity function based on the centered and scaled versions of the w’s. Finally, we

consider our EPA distribution using an exponential similarity function applied to the Euclidean

distance between thew’s. We place a uniform prior on the permutation σ and the temperature

τ has a Gamma(2, 0.5) prior (with mean 4). The discount δ is fixed at 0.0. We set the mass

parameter α to 1.0 for the Ewens and EPA distributions and to 23.0 for the PPMx model,

making the prior expected number of subsets to be approximately 7.5 for all three distributions.

Thirty independent Markov chains are run for 2, 000 iterations for each of the three mod-

els using our software written in Scala. The first 500 iterations are discarded as burn-in. The

performance of the models is assessed using Monte Carlo estimates of the posterior mean of

the adjusted Rand index (ARI) (Hubert and Arabie 1985) with respect to the true partition.

The ARI is a measure of similarity between two partitions, with 1.0 corresponding to perfect

agreement. The mean ARI is 0.227, 0.505, 0.648 for the models using the Ewens, PPMx, and
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EPA distributions, respectively. We also compute the posterior mean of the sum of squared

Euclidean distances from the true coefficient vectors and find values 8.68, 4.24, and 3.91 for

the models using the Ewens, PPMx, and EPA distributions, respectively. All pairwise differ-

ences are statistically significant (p-value less than 0.01) based on a two-sample t-test. Using

either evaluation criteria, the model with the EPA distribution performs the best in this simu-

lation study and demonstrates the viability of the EPA distributions in high dimensions. The

PPMx model, which also performs well, has the advantage that it runs in about 59% of the

CPU time required for the EPA distribution.

7 Conclusion
Our proposed EPA distribution uses pairwise similarity information to define a random

partition distribution. A key feature of our formulation is that probability is allocated among

partitions within a given number of subsets, but probability is not shifted among sets of par-

titions with different numbers of subsets. This feature provides a clear separation of the roles

of: i. the mass parameter α and discount parameter δ and ii. the pairwise similarity function λ

and permutation σ. Further, the distribution of the number of subsets is unchanged from the

usual Ewens and Ewens-Pitman distributions, and the intuition one has regarding the α and

δ from these familiar distributions carries over. We note that our distribution is invariant to

scale changes in the similarity λ, which aligns with the idea that similarity is a relative rather

than an absolute concept. Our formulation also has an explicit p.m.f. with an easily-evaluated

normalizing constant, so standard MCMC samplers are available for posterior inference on

the partition and hyperparameters influencing the partition distribution.

It could be argued that our proposal excessively shrinks towards the Ewens and Ewens-

Pitman distributions and that the distribution of the number of subsets should be influenced

by the similarity information. In a preliminary formulation, we initially considered defining

Pr(σt ∈ S | α, δ, λ, π(σ1, . . . , σt−1)) in (4) to be proportional to
∑

σs∈S λ(σt, σs) − δ for an
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existing subset S and proportional to α+δqt−1 for a new subset. This makes the probability of

forming a new subset depend on the similarity function and, therefore, the distribution of the

number of subsets different from that of the Ewens, Ewens-Pitman, and EPA distributions. We

chose to not pursue this formulation for a few reasons. First, the normalizing constant of the

p.m.f. would then become intractable, making posterior inference difficult for the partition and

hyperparameters. Second, we feel that the clear separation of the roles of the α, δ, and λ can

be desirable and a feature that distinguishes our distribution from the PPMx and ddCRP dis-

tributions. We view our contribution as expanding the choices available for flexible Bayesian

modeling. Finally, we showed in the demonstrations of Sections 6.2 and 6.3 that using the

EPA distribution as a prior partition distribution can provide better statistical performance.
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