Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models

David B. Dahl

Department of Statistics Texas A&M University

Marina Vannucci, Michael Newton, & Qianxing Mo

3rd Lehmann Symposium Rice University May 16, 2007

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- D. B. Dahl, M. A. Newton (200?), Multiple Hypothesis Testing by Clustering Treatment Effects of Correlated Objects, Journal of the American Statistical Association, accepted.
- D. B. Dahl (2006), Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model, in "Bayesian Inference for Gene Expression and Proteomics," Kim-Anh Do, Peter Müller, Marina Vannucci (Eds.), Cambridge University Press.
- D. B. Dahl, Q. Mo, M. Vannucci (200?), Simultaneous Inference for Multiple Testing and Clustering via a Dirichlet Process Mixture Model, Statistical Modelling: An International Journal, accepted.

• • • • • • • • • • • •

BEMMA for Differential Expression – Dahl, Newton (200?)

- 4 BEMMA for Clustering Dahl (200?)
- 5 SIMTAC for DE and Clustering Dahl, Mo, Vannucci (200?)

< □ > < 同 > < 回 > < 回 > < 回

Motivation

- 2 Z-scores Demonstration
- BEMMA for Differential Expression Dahl, Newton (200?)
- 4 BEMMA for Clustering Dahl (200?)
- 5 SIMTAC for DE and Clustering Dahl, Mo, Vannucci (200?)

< □ > < 同 > < 回 > < 回 > < 回

- Multiple hypothesis testing:
 - Goal: Detect shift in marginal distribution of gene expression.
 - Statistical dependence among genes is a nuisance parameter.

- B

- Multiple hypothesis testing:
 - Goal: Detect shift in marginal distribution of gene expression.
 - Statistical dependence among genes is a nuisance parameter.
- Clustering:
 - Goal: Group genes that are highly correlated.
 - Correlation may reflect underlying biological factors of interest.

- E - N

A D > A A P >

- Multiple hypothesis testing:
 - Goal: Detect shift in marginal distribution of gene expression.
 - Statistical dependence among genes is a nuisance parameter.
- Clustering:
 - Goal: Group genes that are highly correlated.
 - Correlation may reflect underlying biological factors of interest.
- We propose a hybrid methodology...

Main Idea Simultaneously infer clustering & test for differential expression

- E - N

A D M A A A M M

- Multiple hypothesis testing:
 - Goal: Detect shift in marginal distribution of gene expression.
 - Statistical dependence among genes is a nuisance parameter.
- Clustering:
 - Goal: Group genes that are highly correlated.
 - Correlation may reflect underlying biological factors of interest.
- We propose a hybrid methodology...

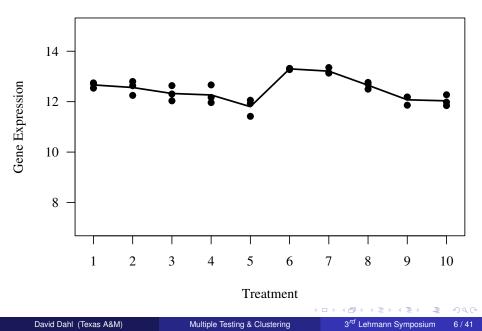
Main Idea Simultaneously infer clustering &

test for differential expression

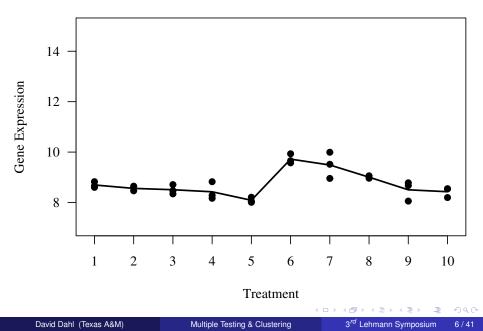
 Other work: Storey (2007), Yuan & Kendziorski (2006), Tibshirani & Wasserman (2006)

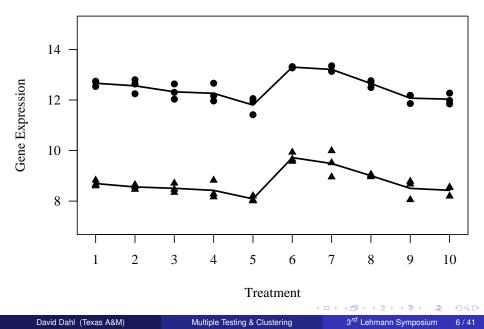
• • • • • • • • • • • • •

Gene 1



Gene 2





Motivation

2 Z-scores Demonstration

3 BEMMA for Differential Expression – Dahl, Newton (200?)

4 BEMMA for Clustering – Dahl (200?)

5 SIMTAC for DE and Clustering – Dahl, Mo, Vannucci (200?)

- Parameters $\theta_1, \ldots, \theta_n$ for *n* observations.
- Hypotheses:
 - $H_{0i}: \theta_i = 0$, vs.
 - *H*_{ai} : θ_i > 0
- Test statistics Z_1, \ldots, Z_n are independent and

 $Z_i \sim N(\theta_i, 1)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Standard Z-test in which H_{0i} is rejected if $Z_i > z^*$, where z^* is chosen to achieve the desired size.
- The test has power:

$$1 - \Phi(z^* - \theta_i)$$

where $\Phi(x)$ is the standard normal distribution function evaluated at *x*.

- Assumes a known clustering: $c_{ij} = I\{\theta_i = \theta_j\}$.
- Test statistic:

$$S_i = Z_i + \sum_{i \neq j} c_{ij} Z_j.$$

• The test has power:

$$1 - \Phi(z^* - \sqrt{n^{(i)}}\theta_i)$$

where $n^{(i)} = \sum_{j=1}^{n} c_{ij}$

• Method 2 is never less powerful than Method 1.

• • • • • • • • • • • •

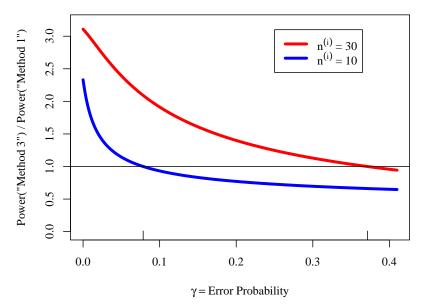
• Clustering indicators *c_{ij}*'s are estimated:

$$\hat{m{c}}_{ij} = \left\{egin{array}{cc} m{c}_{ij} & ext{with probability 1} - \gamma \ m{1} - m{c}_{ij} & ext{with probability } \gamma, \end{array}
ight.$$

- γ is the error rate of clustering.
- Take Method II, but replace c_{ij} with \hat{c}_{ij} to form \hat{S}_i .
- Under an assumption about the distribution of θ₁,...,θ_n, the test has power:

$$1 - \Phi(z^* - \mathbf{k}\theta_i)$$

where *k* is a constant involving γ , $n^{(i)}$, etc.



3

12/41

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

BEMMA for Differential Expression – Dahl, Newton (200?)

5 SIMTAC for DE and Clustering – Dahl, Mo, Vannucci (200?)

• • • • • • • • • • • •

- Bayesian Effects Model for Microarrays (BEMMA):
 - Conjugate Dirichlet process mixture (DPM) model.
 - Identifies differentially expressed genes by borrowing strength from genes likely to have the same parameters.
 - Averages over clustering uncertainty.

• Bayesian Effects Model for Microarrays (BEMMA):

- Conjugate Dirichlet process mixture (DPM) model.
- Identifies differentially expressed genes by borrowing strength from genes likely to have the same parameters.
- Averages over clustering uncertainty.
- Sampling model:

$$y_{gtr} \mid \mu_g, \tau_{gt}, \lambda_g \sim \mathcal{N}(y_{gtr} \mid \mu_g + \tau_{gt}, \lambda_g),$$

where r is replicate, t is treatment, and g is gene.

• Bayesian Effects Model for Microarrays (BEMMA):

- Conjugate Dirichlet process mixture (DPM) model.
- Identifies differentially expressed genes by borrowing strength from genes likely to have the same parameters.
- Averages over clustering uncertainty.
- Sampling model:

$$y_{gtr} \mid \mu_g, \tau_{gt}, \lambda_g \sim \mathcal{N}(y_{gtr} \mid \mu_g + \tau_{gt}, \lambda_g),$$

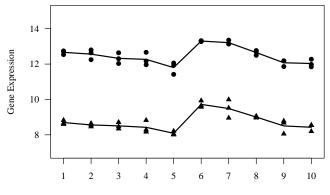
where *r* is replicate, *t* is treatment, and *g* is gene.

• Genes g and g' come from the same cluster iff:

$$(\tau_{g1},\ldots,\tau_{gT},\lambda_g)=(\tau_{g'1},\ldots,\tau_{g'T},\lambda_{g'})$$

Nuisance Parameters

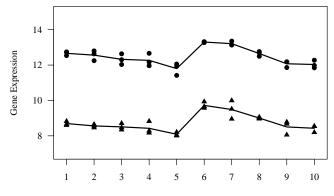
Gene-specific means μ₁,..., μ_G are not related to differential expression or clustering.



Treatment

Nuisance Parameters

Gene-specific means μ₁,..., μ_G are not related to differential expression or clustering.



Treatment

• Let d_g be a vector whose elements are $y_{gtr} - \overline{y}_{g1}$ for $t \ge 2$.

David Dahl (Texas A&M)

Sampling distribution:

$$oldsymbol{d}_{g} \mid oldsymbol{ au}_{g}, \lambda_{g} \sim oldsymbol{N}_{\mathcal{N}}(oldsymbol{d}_{g} \mid oldsymbol{X} au_{g}, \lambda_{g} oldsymbol{\mathsf{M}}),$$

where $\tau_g = (\tau_{g2}, \ldots, \tau_{gT})$, $\mathbf{M} = (\mathbf{I} + \frac{1}{R_1} \mathbf{J})^{-1}$, and \mathbf{X} is a design matrix picking off the appropriate element of τ_g .

Sampling distribution:

$$oldsymbol{d}_g \mid oldsymbol{ au}_g, \lambda_g \sim oldsymbol{N}_{oldsymbol{N}}(oldsymbol{d}_g \mid oldsymbol{X} oldsymbol{ au}_g, \lambda_g oldsymbol{\mathsf{M}}),$$

where $\tau_g = (\tau_{g2}, \ldots, \tau_{gT})$, $\mathbf{M} = (\mathbf{I} + \frac{1}{R_1} \mathbf{J})^{-1}$, and \mathbf{X} is a design matrix picking off the appropriate element of τ_g .

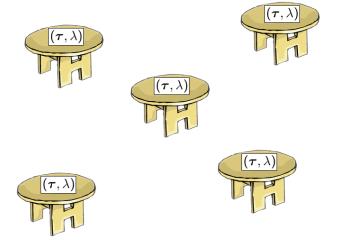
• Clustering based on (τ, λ) via a Dirichlet process prior:

$$(au_g, \lambda_g) \mid F \sim F$$

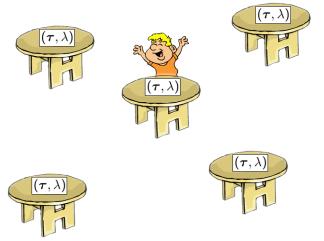
 $F \sim DP(\alpha F_0),$

where F_0 is conjugate to the likelihood.

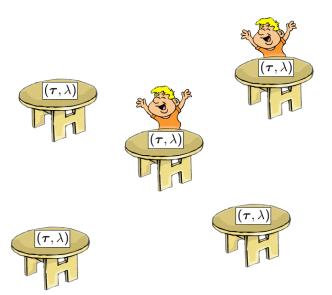
A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A



ser ser ser ser le

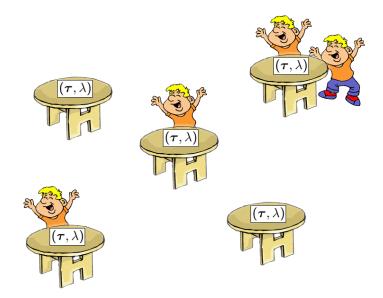


_

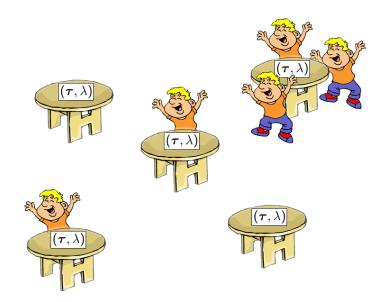


Secolar Secolar Secola

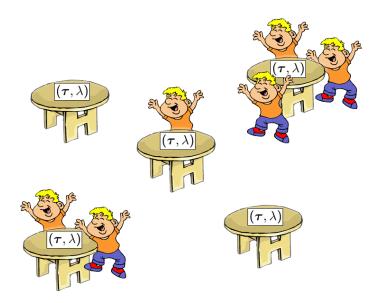
-



_



_



-

- The *τ*'s and *λ*'s may be integrated away, leaving only the clustering of the *G* genes.
- Sample from posterior clustering distribution using MCMC.
 - Gibbs of MacEachern (1994) and Neal (1992)
 - Merge-Split of Jain & Neal (2004)
 - Merge-Split of Dahl (2003)

• After MCMC, it's easy to sample τ 's and λ 's given clustering.

• • • • • • • • • • • • •

- Define a univariate parameter *q_g* that encodes the hypothesis of interest.
- For example, the global *F*-test in one-way ANOVA setting is analogous to:

$$q_g = \sum_{t=2}^T au_{gt}^2$$

- Estimate q_g under squared-error loss by computing its expection with respect to p(q_g | d₁,..., d_G).
- Rank genes for evidence for differential expression using the estimates
 ²
 ²
 ¹
 ²
 ²

< □ > < 同 > < 回 > < 回 > < 回

Simulation Study

- Some other methods for differential expression:
 - EBarrays (Kendziorski, Newton, et al., 2003)
 - LIMMA (Smyth 2004)
- Comparison based on proportion of false discoveries.

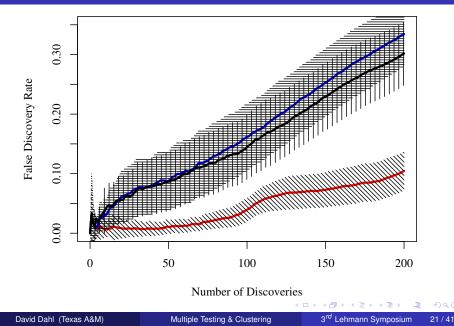
Image: A matrix

Simulation Study

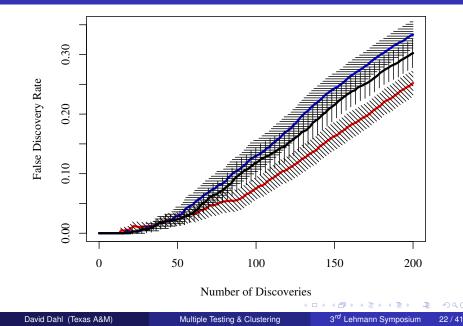
- Some other methods for differential expression:
 - EBarrays (Kendziorski, Newton, et al., 2003)
 - LIMMA (Smyth 2004)
- Comparison based on proportion of false discoveries.
- Simulate datasets:
 - Time-course experiment:
 - Three time points
 - Two treatment conditions
 - 300 of 1,200 genes are differentially expressed.
 - Interest lies in genes that are differentially expressed at one or more time points.
 - Four levels of clustering:
 - Heavy Clustering: 12 clusters of 100 genes per cluster.
 - Moderate Clustering: 60 clusters of 20 genes per cluster.
 - Weak Clustering: 240 clusters of 5 genes per cluster.
 - No Clustering.

• • • • • • • • • • • •

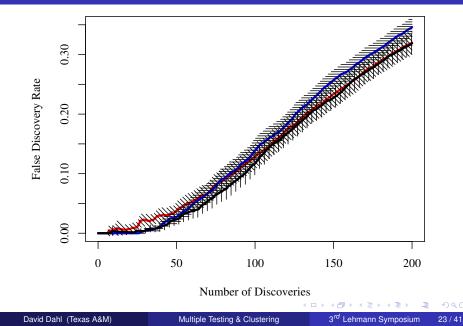
Heavy Clustering



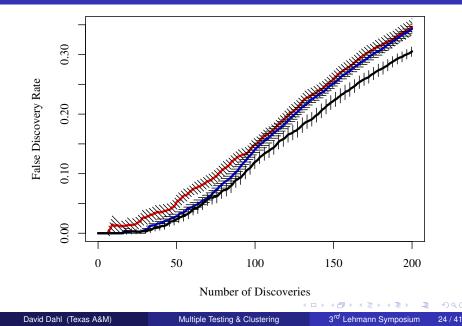
Moderate Clustering



Weak Clustering

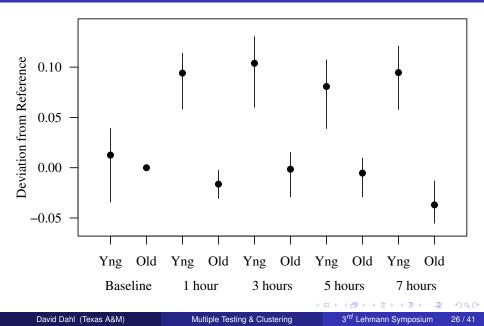


No Clustering



- Old and young mice treated with paraquat injection.
- Sacrifice as baseline or 1, 3, 5, or 7 hours after injection.
- Three replicates per treatment.
- 10,043 probe sets on Affymetrix MG-U74A arrays.
- Background correction and normalization using RMA (Irizarry et al., 2003).
- Biologists are interested in genes whose expression between old and young is similar at baseline and very different at one hour.

Estimated Treatment Effects for Probe Set 92885_at



Motivation

- 2 Z-scores Demonstration
- 3 BEMMA for Differential Expression Dahl, Newton (200?)

BEMMA for Clustering – Dahl (200?)

5 SIMTAC for DE and Clustering – Dahl, Mo, Vannucci (200?)

• • • • • • • • • • • •

Inference on Clustering – Dahl (200?)

- MCMC sampling algorithm produces *B* clusterings π⁽¹⁾,..., π^(B) from the posterior clustering distribution.
- Point estimation methods:
 - Maximum a posteriori (MAP) clustering
 - Medvedovic & Sivaganesan (2002): hierarchical clustering using pairwise probabilities
 - Dahl (2006): stochastic search to minimize posterior expected loss from Binder (1978)
 - Lau & Green (200?): heuristic to minimize posterior expected loss from Binder (1978)

Inference on Clustering – Dahl (200?)

- MCMC sampling algorithm produces *B* clusterings π⁽¹⁾,..., π^(B) from the posterior clustering distribution.
- Point estimation methods:
 - Maximum a posteriori (MAP) clustering
 - Medvedovic & Sivaganesan (2002): hierarchical clustering using pairwise probabilities
 - Dahl (2006): stochastic search to minimize posterior expected loss from Binder (1978)
 - Lau & Green (200?): heuristic to minimize posterior expected loss from Binder (1978)
- Selects the observed clustering closest to the matrix of pairwise probabilities in terms of squared distances:

$$\pi^{\mathsf{LS}} = \operatorname*{arg\,min}_{\pi \in \{\pi^{(1)}, \dots, \pi^{(B)}\}} \sum_{j=1}^{G} \sum_{j=1}^{G} (\delta_{i,j}(\pi) - \hat{p}_{i,j})^2 \tag{1}$$

Degree of	Clustering	Adjusted Rand Index		
Clustering	Method	w/ 95% C.I.		
Неачу	MCLUST	0.413	(0.380, 0.447)	
	BEMMA(least-squares)	0.402	(0.373, 0.431)	
	BEMMA(map)	0.390	(0.362, 0.419)	
	HCLUST(effects,average)	0.277	(0.247, 0.308)	
	HCLUST(effects,complete)	0.260	(0.242, 0.279)	
	HCLUST(correlation,complete)	0.162	(0.144, 0.180)	
	HCLUST(correlation,average)	0.156	(0.141, 0.172)	

Table: Adjusted Rand Index for BEMMA and Other Methods. Large values of the adjusted Rand index indicate better agreement between the estimated and true clustering.

< □ > < 同 > < 回 > < 回

Degree of	Clustering	Adjusted Rand Index		
Clustering	Method	w/ 95% C.I.		
Moderate	BEMMA(least-squares)	0.154	(0.146, 0.163)	
	MCLUST	0.144	(0.136, 0.152)	
	BEMMA(map)	0.127	(0.119, 0.135)	
	HCLUST(effects,complete)	0.117	(0.111, 0.123)	
	HCLUST(effects,average)	0.101	(0.095, 0.107)	
	HCLUST(correlation, average)	0.079	(0.075, 0.083)	
	HCLUST(correlation,complete)	0.073	(0.068, 0.078)	

Table: Adjusted Rand Index for BEMMA and Other Methods. Large values of the adjusted Rand index indicate better agreement between the estimated and true clustering.

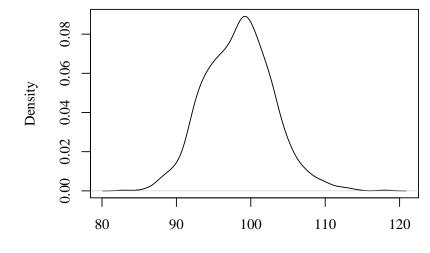
30/41

Degree of	Clustering	Adjusted Rand Index		
Clustering	Method	w/ 95% C.I.		
Weak	MCLUST	0.050	(0.048, 0.052)	
	HCLUST(effects,complete)	0.045	(0.043, 0.048)	
	BEMMA(least-squares)	0.042	(0.040, 0.043)	
	HCLUST(effects,average)	0.037	(0.035, 0.038)	
	BEMMA(map)	0.031	(0.030, 0.033)	
	HCLUST(correlation,average)	0.029	(0.027, 0.030)	
	HCLUST(correlation,complete)	0.027	(0.025, 0.029)	

Table: Adjusted Rand Index for BEMMA and Other Methods. Large values of the adjusted Rand index indicate better agreement between the estimated and true clustering.

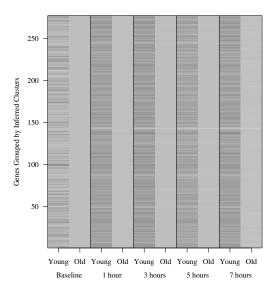
< □ > < 同 > < 回 > < 回

Posterior Distribution of the Number of Clusters

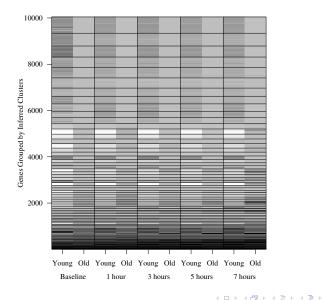


Number of Clusters

Effects Intensity Plot of Cluster of 92885_at

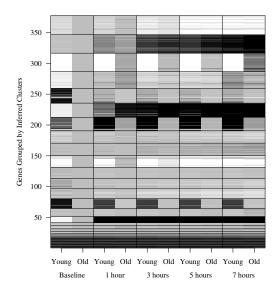


Effects Intensity Plot for All Clusters



David Dahl (Texas A&M)

Effects Intensity Plot for Smallest Clusters



Motivation

- 2 Z-scores Demonstration
- BEMMA for Differential Expression Dahl, Newton (200?)
- 4 BEMMA for Clustering Dahl (200?)
- SIMTAC for DE and Clustering Dahl, Mo, Vannucci (200?)

• • • • • • • • • • • •

SIMTAC – Dahl, Mo, Vannucci (200?)

- Simultaneous Inference for Multiple Testing and Clustering (SIMTAC): Extension of BEMMA
 - Separates clustering of regression coefficients from accommodation of heteroscedasticity
 - Wider class of experimental designs
 - No need to specify an arbitrary reference treatment
 - Nonconjugate Dirichlet process mixture (DPM) model
- Sampling distribution:

$$\boldsymbol{d}_{\boldsymbol{g}} \mid \mu_{\boldsymbol{g}}, \boldsymbol{\beta}_{\boldsymbol{g}}, \lambda_{\boldsymbol{g}} \sim \mathsf{N}_{\boldsymbol{K}} \left(\boldsymbol{d}_{\boldsymbol{g}} \mid \mu_{\boldsymbol{g}} \boldsymbol{j} + \boldsymbol{X} \boldsymbol{\beta}_{\boldsymbol{g}}, \lambda_{\boldsymbol{g}} \boldsymbol{\mathsf{M}} \right),$$

Prior distribution:

$$\mu_{m{g}} \sim \mathsf{N}\left(\mu_{m{g}} \mid m{m}_{\mu}, m{p}_{\mu}
ight)$$

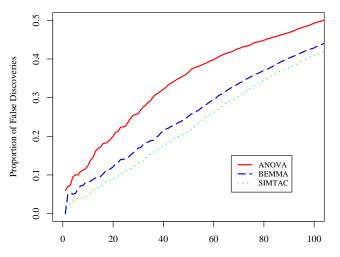
$$\begin{array}{ll} \boldsymbol{\beta}_{\boldsymbol{g}} \mid \boldsymbol{G}_{\boldsymbol{\beta}} \sim \boldsymbol{G}_{\boldsymbol{\beta}} & \lambda_{\boldsymbol{g}} \mid \boldsymbol{G}_{\boldsymbol{\lambda}} \sim \boldsymbol{G}_{\boldsymbol{\lambda}} \\ \boldsymbol{G}_{\boldsymbol{\beta}} \sim \mathsf{DP}\left(\boldsymbol{\alpha}_{\boldsymbol{\beta}}\boldsymbol{G}_{\boldsymbol{\beta}}^{\star}\right) & \boldsymbol{G}_{\boldsymbol{\lambda}} \sim \mathsf{DP}\left(\boldsymbol{\alpha}_{\boldsymbol{\lambda}}\boldsymbol{G}_{\boldsymbol{\lambda}}^{\star}\right) \end{array}$$

Simulation Study

Size of	Relationship of Regression Coefficients Encoding Equivalent and Differential Expression		Number of Clusters with this	
Each Cluster	Time Point 1	Time Point 2	Time Point 3	Configuration
120	$\beta_{g,3} = 0$	$\beta_{g,4} = \beta_{g,1}$	$\beta_{g,5} = \beta_{g,2}$	1
40	$\beta_{q,3} = 0$	$\beta_{q,4} = \beta_{q,1}$	$\beta_{q,5} = \beta_{q,2}$	2
40	$\beta_{g,3} = 0$	$\beta_{g,4} \neq \beta_{g,1}$	$\beta_{g,5} = \beta_{g,2}$	1
15	$\beta_{g,3} = 0$	$\beta_{g,4} = \beta_{g,1}$	$\beta_{g,5} = \beta_{g,2}$	6
15	$\beta_{g,3} = 0$	$\beta_{g,4} \neq \beta_{g,1}$	$\beta_{g,5} = \beta_{g,2}$	1
15	$\beta_{g,3} = 0$	$\beta_{g,4} \neq \beta_{g,1}$	$\beta_{g,5} \neq \beta_{g,2}$	1
5	$\beta_{g,3} = 0$	$\beta_{q,4} = \beta_{q,1}$	$\beta_{q,5} = \beta_{q,2}$	19
5	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{q,5} = \beta_{q,2}$	2
5	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{q,5} \neq \beta_{q,2}$	2
5	$\beta_{g,3} \neq 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} \neq \beta_{g,2}$	1
2	$\beta_{g,3} = 0$	$\beta_{q,4} = \beta_{q,1}$	$\beta_{g,5} = \beta_{g,2}$	48
2	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} = \beta_{g,2}$	4
2	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} \neq \beta_{g,2}$	4
2	$\beta_{g,3} \neq 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} \neq \beta_{g,2}$	4
1	$\beta_{g,3} = 0$	$\beta_{q,4} = \beta_{q,1}$	$\beta_{g,5} = \beta_{g,2}$	95
1	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} = \beta_{g,2}$	5
1	$\beta_{g,3} = 0$	$\beta_{q,4} \neq \beta_{q,1}$	$\beta_{g,5} \neq \beta_{g,2}$	5
1	$\beta_{g,3} \neq 0$	$\beta_{a,4} \neq \beta_{a,1}$	$\beta_{q,5} \neq \beta_{q,2}$	5
1	$\beta_{g,3} = 0$	$\beta_{g,4} = \beta_{g,1}$	$\beta_{g,5} \neq \beta_{g,2}$	5
1	$\beta_{g,3}^{g,i} \neq 0$	$\beta_{g,4} \neq \beta_{g,1}$		5

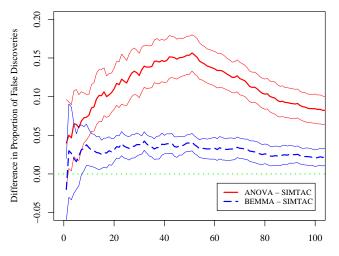
Table: **Clusters in a Synthetic Dataset.** For the 216 clusters in each synthetic dataset, this table shows the relationship among and the cluster sizes for the regression coefficients.

Proportion of False Discoveries



Number of Discoveries

Difference in Proportion of False Discoveries



Number of Discoveries

A diamatrix A

40 / 41

Summary

- Dependence can be exploited to improve power in multiple testing.
- Dirichlet process mixture (DPM) models provide a powerful machinery to accomplish simultaneous inference on clustering and multiple hypothesis testing.
- BEMMA:
 - Under weak clustering, BEMMA performs as well as its peers.
 - Under heavier clustering, BEMMA performs substantially better.
 - BEMMA has been successfully applied to a replicated microarray study with 10,000+ probesets and 10 treatment conditions.
- SIMTAC:
 - Improvemed implementation of the the idea.
 - Simulation results are encouraging... now applying to local data.
- Least-squares clustering:
 - Convenient and conceptually appealing procedure for point estimation of clustering.

• • • • • • • • • • • •